1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
// Copyright 2020-2021, Cerno
// Licensed under the MIT License
// See the LICENSE file or <http://opensource.org/licenses/MIT>
#![cfg_attr(
feature = "nightly",
feature(
type_privacy_lints,
non_exhaustive_omitted_patterns_lint,
strict_provenance
)
)]
#![cfg_attr(
feature = "nightly",
warn(
fuzzy_provenance_casts,
lossy_provenance_casts,
unnameable_types,
non_exhaustive_omitted_patterns,
clippy::empty_enum_variants_with_brackets
)
)]
#![doc = include_str!("../README.md")]
use core::{ffi::c_void, fmt, num::TryFromIntError, ptr, slice};
use std::os::fd::{AsFd, AsRawFd, BorrowedFd, FromRawFd, OwnedFd, RawFd};
use log::{debug, warn};
use rustix::{
fs::fstat,
mm::{mmap, munmap, MapFlags, ProtFlags},
param::page_size,
};
mod ioctl;
use ioctl::{
dma_buf_begin_cpu_read_access, dma_buf_begin_cpu_readwrite_access,
dma_buf_begin_cpu_write_access, dma_buf_end_cpu_read_access, dma_buf_end_cpu_readwrite_access,
dma_buf_end_cpu_write_access,
};
/// Error type to map a [`DmaBuf`]
#[non_exhaustive]
#[derive(thiserror::Error, Debug)]
pub enum MapError {
/// An Error occurred while accessing the buffer file descriptor
#[error("Could not access the buffer file descriptor: {reason}")]
FdAccess {
/// Description of the Error
reason: String,
/// Source of the Error
source: std::io::Error,
},
/// An Error occurred while mapping the buffer file descriptor
#[error("Could not map the buffer file descriptor: {reason}")]
MappingFailed {
/// Description of the Error
reason: String,
/// Source of the Error
source: std::io::Error,
},
/// An Error occurred while converting between Integer types
#[error("Integer Conversion Error")]
IntegerConversionFailed(#[from] TryFromIntError),
}
/// A DMA-Buf buffer
#[derive(Debug)]
pub struct DmaBuf(OwnedFd);
impl DmaBuf {
/// Maps a `DmaBuf` for the CPU to access it
///
/// # Panics
///
/// If the buffer size reported by the kernel (`i64`) cannot fit into an `usize`.
///
/// # Errors
///
/// Will return an error if either the Buffer's length can't be retrieved, or if the mmap call
/// fails.
pub fn memory_map(self) -> Result<MappedDmaBuf, MapError> {
debug!("Mapping DMA-Buf buffer with File Descriptor {:#?}", self.0);
let stat = fstat(&self.0).map_err(|e| MapError::FdAccess {
reason: e.to_string(),
source: std::io::Error::from(e),
})?;
let len = usize::try_from(stat.st_size)?.next_multiple_of(page_size());
debug!("Valid buffer, size {len}");
// SAFETY: It's unclear at this point what the exact safety requirements from mmap are, but
// our fd is valid and the length is aligned, so that's something.
let mapping_ptr = unsafe {
mmap(
ptr::null_mut(),
len,
ProtFlags::READ | ProtFlags::WRITE,
MapFlags::SHARED,
&self.0,
0,
)
}
.map(<*mut c_void>::cast::<u8>)
.map_err(|e| MapError::MappingFailed {
reason: e.to_string(),
source: std::io::Error::from(e),
})?;
debug!("Memory Mapping Done");
Ok(MappedDmaBuf {
buf: self,
len,
mmap: mapping_ptr,
})
}
}
/// A `DmaBuf` mapped in memory
pub struct MappedDmaBuf {
buf: DmaBuf,
len: usize,
mmap: *mut u8,
}
/// Error type to access a [`MappedDmaBuf`]
#[derive(Debug, thiserror::Error)]
pub enum BufferError {
/// An Error occured while accessing the buffer file descriptor
#[error("Could not access the buffer: {reason}")]
FdAccess {
/// Description of the Error
reason: String,
/// Source of the Error
source: std::io::Error,
},
/// An Error occured in the closure
#[error("The closure returned an error: {0}")]
Closure(Box<dyn std::error::Error>),
}
impl MappedDmaBuf {
fn as_slice(&self) -> &[u8] {
// SAFETY: We know that the pointer is valid, and the buffer length is at least equal to
// self.len bytes. The backing buffer won't be mutated by the kernel, our structure is the
// sole owner of the pointer, and it won't be mutated in our code either, so we're safe.
unsafe { slice::from_raw_parts(self.mmap, self.len) }
}
fn as_slice_mut(&mut self) -> &mut [u8] {
// SAFETY: We know that the pointer is valid, and the buffer length is at least equal to
// self.len bytes. The backing buffer won't be mutated by the kernel, our structure is the
// sole owner of the pointer, and it won't be mutated in our code either, so we're safe.
unsafe { slice::from_raw_parts_mut(self.mmap, self.len) }
}
/// Calls a closure to read the buffer content
///
/// DMA-Buf requires the user-space to call the `DMA_BUF_IOCTL_SYNC` ioctl before and after any
/// CPU access to a buffer in order to maintain the cache coherency. The closure will be run
/// with those primitives called for a read access from the CPU.
///
/// The result of the closure will be returned.
///
/// # Errors
///
/// Will return [Error] if the underlying ioctl or the closure fails
pub fn read<A, F, R>(&self, f: F, arg: Option<A>) -> Result<R, BufferError>
where
F: Fn(&[u8], Option<A>) -> Result<R, Box<dyn std::error::Error>>,
{
debug!("Preparing the buffer for read access");
dma_buf_begin_cpu_read_access(self.buf.as_fd())?;
debug!("Accessing the buffer");
let ret = {
let bytes = self.as_slice();
f(bytes, arg)
.map(|v| {
debug!("Closure done without error");
v
})
.map_err(|e| {
debug!("Closure encountered an error {}", e);
BufferError::Closure(e)
})
};
dma_buf_end_cpu_read_access(self.buf.as_fd())?;
debug!("Buffer access done");
ret
}
/// Calls a closure to read from and write to the buffer content
///
/// DMA-Buf requires the user-space to call the `DMA_BUF_IOCTL_SYNC` ioctl before and after any
/// CPU access to a buffer in order to maintain the cache coherency. The closure will be run
/// with those primitives called for a read and write access from the CPU.
///
/// The result of the closure will be returned on success. On failure, the closure must return
/// `Error::Closure`
///
/// # Errors
///
/// Will return [Error] if the underlying ioctl or the closure fails
pub fn readwrite<A, F, R>(&mut self, f: F, arg: Option<A>) -> Result<R, BufferError>
where
F: Fn(&mut [u8], Option<A>) -> Result<R, Box<dyn std::error::Error>>,
{
debug!("Preparing the buffer for read/write access");
dma_buf_begin_cpu_readwrite_access(self.buf.as_fd())?;
debug!("Accessing the buffer");
let ret = {
let bytes = self.as_slice_mut();
f(bytes, arg)
.map(|v| {
debug!("Closure done without error");
v
})
.map_err(|e| {
debug!("Closure encountered an error {}", e);
BufferError::Closure(e)
})
};
dma_buf_end_cpu_readwrite_access(self.buf.as_fd())?;
debug!("Buffer access done");
ret
}
/// Calls a closure to read from and write to the buffer content
///
/// DMA-Buf requires the user-space to call the `DMA_BUF_IOCTL_SYNC` ioctl before and after any
/// CPU access to a buffer in order to maintain the cache coherency. The closure will be run
/// with those primitives called for a read and write access from the CPU.
///
/// The closure must return () on success. On failure, the closure must return `Error::Closure`.
///
/// # Errors
///
/// Will return [Error] if the underlying ioctl or the closure fails
pub fn write<A, F>(&mut self, f: F, arg: Option<A>) -> Result<(), BufferError>
where
F: Fn(&mut [u8], Option<A>) -> Result<(), Box<dyn std::error::Error>>,
{
debug!("Preparing the buffer for write access");
dma_buf_begin_cpu_write_access(self.buf.as_fd())?;
debug!("Accessing the buffer");
let ret = {
let bytes = self.as_slice_mut();
f(bytes, arg)
.map(|()| {
debug!("Closure done without error");
})
.map_err(|e| {
debug!("Closure encountered an error {}", e);
BufferError::Closure(e)
})
};
dma_buf_end_cpu_write_access(self.buf.as_fd())?;
debug!("Buffer access done");
ret
}
}
impl From<OwnedFd> for DmaBuf {
fn from(owned: OwnedFd) -> Self {
Self(owned)
}
}
impl AsFd for DmaBuf {
fn as_fd(&self) -> BorrowedFd<'_> {
self.0.as_fd()
}
}
impl AsRawFd for DmaBuf {
fn as_raw_fd(&self) -> RawFd {
self.0.as_raw_fd()
}
}
impl AsFd for MappedDmaBuf {
fn as_fd(&self) -> BorrowedFd<'_> {
self.buf.as_fd()
}
}
impl AsRawFd for MappedDmaBuf {
fn as_raw_fd(&self) -> RawFd {
self.buf.as_raw_fd()
}
}
impl FromRawFd for DmaBuf {
unsafe fn from_raw_fd(fd: RawFd) -> Self {
debug!("Importing DMABuf from File Descriptor {}", fd);
// SAFETY: We're just forwarding the FromRawFd implementation to our inner OwnerFd type.
// We're having exactly the same safety guarantees.
Self(unsafe { OwnedFd::from_raw_fd(fd) })
}
}
impl fmt::Debug for MappedDmaBuf {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("MappedDmaBuf")
.field("DmaBuf", &self.buf)
.field("len", &self.len)
.field("address", &self.mmap)
.finish()
}
}
impl Drop for MappedDmaBuf {
fn drop(&mut self) {
// SAFETY: It's not clear what rustix expects from a safety perspective, but our pointer is
// valid, and is a void pointer at least.
if unsafe { munmap(self.mmap.cast::<c_void>(), self.len) }.is_err() {
warn!("unmap failed!");
}
}
}